热点新闻
GPT-4 何以巅覆人类社会
2023-07-31 02:17  浏览:4093  搜索引擎搜索“混灰机械网”
温馨提示:信息一旦丢失不一定找得到,请务必收藏信息以备急用!本站所有信息均是注册会员发布如遇到侵权请联系文章中的联系方式或客服删除!
联系我时,请说明是在混灰机械网看到的信息,谢谢。
展会发布 发布信息 广告合作 软文发布

这是一个对GPT讲解的非常透彻的视频,我把它变成文字,并且花时间整理了出来,没有全盘照搬,挑了一些重点,想了解GPT的,不妨读此文,我想对你一定是有震撼力的。

这GPT是将整个影响人类社会的,但它没有向国内开放,通用媒体缺少相应的知识,所以在这里给大家科普一下GPT的原理,并提供一个视角让大家意识到它为何如此重要。让那些没有机会的人,也能应对这即将到来的变革。这次的阐述,抛开具体技术细节,少用专业用语,讲解GPT的原理和制造过程,以及涌现的能力和如何面对。












一 GPT的底层原理

尽管它展现的能力很惊人,但实际上没有那么神,它没有意识,没有欲望,没有情绪,甚至都不知道自己在说些什么?它就像一只学话鹦鹉,GPT的功能非常简单,四个字概括,就是单字接拢。







这是一个模型,当你给它一个字的时候,它就会生成下一个字,最初它的回答是随机的,如果你想让它适合你的需要,你就要不断地去训练这个模型,给它输入信息,也就是学习材料,让它学习了你给的学习材料,让它知道你的想法,它就会按照你的想法回答问题。不同的人训练模型,那么说法也不同,同一个问题由于两个人训练的不同,模型就有了两个答案,那么它会如何回答呢?那就是随机性了,这里要说的就是概率了,因此一个问题可以回答有不同版本。






其实不用单字接拢GPT也能回答问题,因为在制作时,就已经输入大量的内容,直接搜索就可以得到答案,之所以要训练GPT,就是要训练它如何正确的回答,同时在它回答没有遇到的问题时,根据自己所学进行回答,举一反三地目的也叫泛化。

很多人都错误的认为,GPT是搜索引擎的升级版,其实不然,搜索引擎不能回答数据库里没有储存的内容,而GPT可以,因为它是根据生产原理,经过不断地学习,它可以回答它没有遇到过的问题,因此它被称为生成模型。






这是它的长版,而它也有搜索引擎没有的短版。搜索引擎不会混淆记忆,但chatGPT能,为了能应对没被记忆的情况,它会学习语言单位的规律来生成答案。然而这样如果出现了实际不同,但碰巧符合同一个规律的内容,模型就有可能混淆它,最直接的结果是,若现实中不存在的内容,刚好符合它从训练材料中学到的规律,那么chatGPT就有可能对不存在的内容,进行合乎规律的混合捏造,这就是有人问它实际性内容时,可能看到它胡说八道。

另一个,它的内容无法被直接增删改查,这就导致两个问题,第一,由于我们很难理解它所建构的规律,就无法查看它记住了什么?学到了什么?只能通过多次提问来猜测它的所记所学,这难免在使用时带来安全风险。







第二 由于只能通过两次调整模型(即两次训练),来增加删除修改它的所记所学,这难免在更新的时候降低效率。chatGPT高度依赖数据,呀就是学习材料,想要让chatGPT能够应对无数未见情况,就要给它数量足够多,质量足够高的学习材料,否则它给出的回答以偏概全,此外,它的胡编也需要用优质的学习材料来纠正。






看到这里,你会感觉它也没有什么特别之处,那有网上说的那么玄乎,基础结构都很简单,为何能火爆到今天这种程度,还要影响整个社会。上面只是GPT的基础原理,而不是chatGPT的,chatGPT在此基础上有三个训练阶段,

二 GPT的三个训练






让机器理解人类语言的难点是,同一个意思可以有多种不同的表达方式,同一个词,与可以用同一个语言描述,在不同语境中,又有不同含义,想解决这个问题,就要让机器学会各种语义关系语法规律,那些表达是同一个意思,GPT的方法是让模型看到尽可能多的尽可能丰富的【语言范例】,我们把这个阶段称作开卷有益。






G 代表生成 T 代表一种模型 P 代表开卷有益

开卷有益就好像在鹦鹉旁边放了一个电视机,把内容都播给它听,让它自己学习,那么多少能够呢?这让我们回忆一下历史,其实研发GPT的公司OPENAI 之前还做过几代模型。







GPT3最大模型参数到了1750亿,是第二代的116倍,所使用的学习数据更是达到了45TB, 被称为超大语言模型。







当单字接拢模型的规模达到一定程度后,就会涌现理解指令,理解例子,思维链的能力,到此为止已经讲完了chatGPT的基础原理。

三 未来影响

像比尔盖茨一些人认为chatGPT像互联网一样意义重大,但有一些人使用chatGPT后,感觉并没有那么神,是人们夸大了它的作用。实际上从产品形态和创新意义上来看,chatGPT确实不够完善,它来自于论文和AI团队的长期积累。但它确实是有里程碑意义的,它的意义并不在于产品和创新,而在于完成了一次验证,让全球看到了{ 大语言模型的可行性 }

{ 大语言模型能为人类做什么 } 只有弄清楚这一点,才有依据判断它对社会的影响。既然是语言模型,那它自然精通语言,可以校对拼写,检查语法,转换句型,翻译外语,对语言组织规则的遵守,已经超越了绝大多数人。有个大学教授发现有个学生的毕业论文是由chatGPT写的,之所以发现是因为论文的语法过于完美。这位教授表示,在语言组织方面,chatGPT超过了百分之九十五的学生。

但那又能怎样,无非是多了一个更好的语法检测器,至于影响整个社会吗?精通语言只是大语言模型的一个方面,它真正有价值的在于,在精通语言的基础上,还能存储人类从古至今积累的世界知识。人类自身是一个相当脆弱的物种,跑不过马,斗不过熊,嗅觉不如狗,视力不如鹰,能从众多高等动物中脱颖而出的原因,就是语言中积累的世界知识。

其它高等动物虽然也能通过实践,建构关于世界的认知,获得相应的改造能力,可这些认识仅存在于个体的脑中,会随着个体的死亡而消失。,无法代代积累,但语言的发明,允许人类将个体所获得的认识存储在体外,进而打通了整个物种的过去和未来,即使个体死亡,该个体的认识,也能依附语言,被其他个体继承和发展下去。

作为现代人的我们,并没有在生理上比前人更优越,拥有更强能力的原因,只是语言中积累的知识比过去更多。当人类步入文明社会后,尽管已不必在野外求生,但仍然需要群体协作地创造知识,继承知识和应用知识。满足社会的需求,来维持自己的生计,而这三个环节,全都是依靠语言来完成。

由于大语言模型所能改善的是,群体协作过程中,创造,继承,应用知识时的语言处理效率,所以随着技术的发展,大语言模型对社会的影响范围将和当初电脑的影响范围一样全社会,我们随便就能列出,很多能跟大语言模型相结合的场景,跟搜索引擎结合,帮助用户精准寻找和筛选信息,跟视频会议结合,多语翻译,会议记录与总结,谈话查找……。

稍微留意一下就会发现,chatGPT的报道主要分布于新闻界,学术界,教育界,商业界和内容生产行业。商业界有动作很好理解,毕竟商人对市场的感知敏锐。前三个领域动作频繁,正是因为它们与语言中的知识密切相关。学术界专注于创造知识,教育界专注于传承知识,而新闻界专注于传播信息,因此受到的影响最大。

这也是为什么,被称为美版头条的数字媒体公司BuzzFeed,宣布将使用chatGPT作为内容创作的一部分后,其股价暴涨三倍,尽管该公司之前曾以经济恶化为由,裁减了百分之十二的员工。大语言模型对教育界的影响更加强烈,主要不是因为学生可以用它来写作业,而是因为它对我们现有的人才培养模式,提出了新的挑战。真正令人担心的是,按照现有模式培养出来的学生,在未来5—10年后,还能不能找到好工作?能否适应未来的就业市场?现代教育技术仍是一种以传授既有知识为主的培养模式,起源可追溯到十八世纪的普鲁士教育。

但在飞速发展的今天,市场变化越来越快,工具更新换代频繁,这种传授既有知识的培养模式,越来越难适应时代。因为无论传授什么既有知识,毕业前基本都会过时,所有人都需要不断学习新知识。因此,自上个世纪六十年代开始,终身学习的理念一直被反复推崇,人们也早就意识到,要将培养模式转变为,以培养学习能力和创造能力为主,这样无论学生毕业多久,工具变化多快,都可以通过高效的学习能力快速掌握新技能,从实践中创造新知识。

但是,要实现这个目标并不容易,首先就需要一个更适合的理论框架来描述现象。因为我们在前面已经看到了,大语言模型也会创新,因此单纯喊出“ 要培养创新型人才 ”  没有实际指导意义,必须要对知识层级做更精细的划分,将更高层次的创新和大语言模型的创新加以区分,明确指出什么样的创新人才才值得培养,又要如何培养,提供相应的培养工具和易于实施的普及方案,并在各方角色的共同配合下,才有可能成功,因此一直推进缓慢。

但chatGPT的出现,迫使人们必须要加速这一推进了。因为一个非常现实的问题正摆在前面:5年后,如果学校传授的既有知识,任何人靠大语言模型就能实现,那该怎么办?这个问题可不是只靠禁止学生使用chatGPT就能解决的,因为未来的大型语言模型只会更出色,更快速,更便宜。

在这种情况下,相当于人人都配有一个熟读人类既有知识的“ 工语嫣 ” ,市场可不会因为学校的禁止而集体不用。另一方面,大语言模型对网络安全也带来了挑战。之前讲过,chatGPT在“ 开卷有益 ” 阶段,会对海量的互联网内容做单字接拢。然而,互联网内容中,不免存在一些带有偏见,歧视文化和意识形态侵袭等危害性言论。

chatGPT就有机会学到这些危险性言论的模式,输出不良回答。此外,也会有人刻意提问,“ 如何编造杀猪盘 ” 等问题,用于不法行为,尽管在模板规范阶段有约束,但chatGPT毕竟不是像人类那样,真正地学会了知识,只是学到了承载知识的语言搭配模式。因此,仍有可能被诱导输出帮助犯罪的知识,从而使防范违法犯罪变得更加困难。

在群体协作时,人们使用的语言难免会泄露工作内容,进而泄露商业或国家机密。如何确保提问的内容不被泄漏,将是各个机构都关心的问题,很可能未来每个机构,都会自己部署大语言模型来确保安全,但这样又无法发挥数据规模效应。因此,如果在保证各机构数据安全的前提下,实现联邦学习,又有了新的挑战。这些安全问题加起来,你就会发现,我国只能研发自己的大语言模型。

总结






四 如何应对

chatGPT非常强大,但它仍是一个没有意识的工具,不会主动配合人,面对空洞的提问就给出空洞的回答,需要被正确的使用,才能发挥最大的价值。但我们却能看到,很多人专门将chatGPT用于其最不擅长的领域,突出其缺点,或用最顶尖的标准,凸显其不足。很明显,目的就是要否定它。这种锤了无用,因为它没有手灵活的否定,看起来不可理喻,但实际上却是人类在感受到威胁时的本能反应,因为我们害怕被取代。

然而,很多人却害怕错了对象,把矛头指向了chatGPT,指向了一个工具。可工具无法取代人,只有会用工具的人取代不会用工具的人。任何新工具都可能引起取代,因为如果自己不用而别人使用,就会失去工具带来的竞争力,最终人们都不得不用。这种囚徒困境与chatGPT无关,即使让chatGPT从世上消失,取代现象也会随着其它新工具的出现而出现,也不会因为人的害怕和抵触而消退。

因此,应对的第一步,就是要克服自己的抵触心态。既然时代的车轮无法阻挡,那么抵触新工具,只会让我们更晚接触新工具,更晚获得工具带来的优势。应对的第二步,就是做好终身学习的准备,因为chatGPT之后,还会有新工具。这一点看似简单,但对于习惯了应试教育的人而言并不容易。

应试教育是一种高度特化的教育。由于最终的考核指标是分数,因此不论教育系统的设计目标是什么,最终学生的行为都难免会被特化为仅服务于分数,凡是不能提高分数的行为,都不被视为学习,即使是提高创造力的行为。这样长期训练的结果是,很多学生对学习词的理解变得片面和扭曲。

每当提到学习这个词时,这些学生就会联想到那种反人性的规训。好不容易熬到毕业了,现在被告知还要再学习,他们情绪上当然要抵触。好在这种抵触,很多人在工作一段时间后,就能克服。因为他们慢慢会意识到,市场和工具的变化究竟有多快,在心态上也开始积极拥抱学习。然而不幸的是,即使心态上不再抵触学习,也还不得不克服过去形成的错误习惯,重塑自己的终身学习能力。

这一步是最困难的,不仅要去掌握抽象层次更高的认识论,符号学,数学建模,批判性思维等内容,还要克服长期养成的习惯,但十多年的应试规训对一个人的影响太深远了,很难一朝一夕改变。每当这些人想学习时,就会条件反射地重拾应试的学习习惯,自己把自己变回教室里等着灌输的学生,会习惯性地等待别人的教授,习惯性地记忆别人的总结,很少思考知识是怎么是来的。比如不少刚到大学的高中生会觉得,实验是浪费时间,不如赶紧列出知识点让他们去记。

他们已经懒得思考事物之间的关联,只想快点看到老师的总结。很多人意识到要学习使用chatGPT时,脑中闪过的第一件事也是找本书或买个课,觉得没有这两个东西自己就学不了了。去年我们组织了建构社群,想要帮助人重塑终身学习的能力。可在社群里也会发现,即使成员在认知上已经明白,不能脱离实体地去记忆符号,仍会在习惯上一次又一次地犯错,不得不反复提醒。

能感觉到习惯了应试教育的学生,就仿佛是动物园养的狮子,从小到大吃的都是送到嘴边的食物,以至于不认识野外的食物,忘记了如何自己获取食物,独立生存的能力逐渐退化,难以回到野外了。但即便再困难,也必须要克服,必须要完成对终身学习能力的重塑。因为过去那种学个知识,干一辈子的年代,已经逐渐远去。

经历了多次科技革命的我们,也正处在一个加速时期,新工具的出现速度会越来越快,取代现象也会越来越频繁。只有学习能力才是应对未来的根本。或许我们的后代,可以生下来就处在全面培养学习能力和创造能力的系统中,从小就训练,适应快速变化的学习能力和创造能力。但对于转型期的我们来说,只有靠自己,训练自己的终身学习能力,来应对随后加速变化的市场和工具。

最后,chatGPT所掀起的浪潮,已经不仅仅涉及个人,还关乎各国未来在国际中的地位。美国前国务卿认为,这项技术的进步,将带来新的认知革命,重新定义人类知识,加速我们现实结构的改变,并重组政治和社会。2月20日,法国负责数字转型的代表发声,chatGPT确实存在歧视和操纵等风险,但法国不能错过这一波人工智能的新浪潮,应通过明确规范和加强管控来降低风险。

3月5日,我国科技部长也表示,要注重科技伦理,趋利避害,并提到科技部在这方面的重视和布局。近期我国的各领域学者也都针对chatGPT,举办了非常多的研讨会,现在大家应该能明白,chatGPT到底是不是炒作了。再次强调,大语言模型所影响的是,知识的创造,继承,应用。这三个环节所构成的学习系统,是任何生命系统得以延续的根本,决定着一个细胞个体文明,认识世界和改造世界的能力。在整个人类史以及整个生命史中,凡是学习系统的升级都会伴随生命的跃升,无论从单细胞生命到多细胞动物,还是从智人的崛起到多次科技革命,看过学习观演化史部分观众,应该都能理解这一点。

在去年五月发布的视频中,我提到人类正处在下一次跃升的进程中,但还缺少一项能升级学习系统的技术,而大语言模型很有可能就是这项技术。因为它正在改变人类,群体应用知识的方式和继承知识的方式,甚至可能在未来形成人机合作的科研,改变人类创造知识的方式,若真能如此,那么人类必将会因此步入下一个文明形态。

中国措失过三次工业革命,这些年我们一直在实现民族的复兴,不能再错过这一次。未来的大语言模型能够让每个人更快地获取承载知识的符号,会降低继承型人才的竞争力,,不过每个人的学习能力和理解能力,将成为驾驭这项技术的瓶颈。如果个体的学习能力没有相应地提升,就无法充分发挥这项技术的优势。

所以,如果我们全都加强对学习能力和高层次认知能力的训练,就能让我国在未来的国际竞争中获得优势。总的来说,chatGPT的出现,确实带来了各种各样的问题和风险:存在准确性和可解释性的缺陷,存在科技伦理安全和结构性失业的冲击,存在民族文化和意识形态的侵袭。但这些问题和风险,所有国家都要面对,一样会有害怕和抵触的情绪,我们应该利用这一点,率先克服抵触心理,反过来抓住chatGPT的机会,率先研究大语言模型的改进和配套技术的重组,率先培养终身学习能力和推动教育改革,率先做好科技伦理的约束和换岗转行的防备,主动输出我们的文化和价值观。

以上对chatGPT的讲解结束,建议读完全部。

发布人:1ad0****    IP:120.244.10.***     举报/删稿
展会推荐
让朕来说2句
评论
收藏
点赞
转发